3,229 research outputs found

    Possible use of self-calibration to reduce systematic uncertainties in determining distance-redshift relation via gravitational radiation from merging binaries

    Full text link
    By observing mergers of compact objects, future gravity wave experiments would measure the luminosity distance to a large number of sources to a high precision but not their redshifts. Given the directional sensitivity of an experiment, a fraction of such sources (gold plated -- GP) can be identified optically as single objects in the direction of the source. We show that if an approximate distance-redshift relation is known then it is possible to statistically resolve those sources that have multiple galaxies in the beam. We study the feasibility of using gold plated sources to iteratively resolve the unresolved sources, obtain the self-calibrated best possible distance-redshift relation and provide an analytical expression for the accuracy achievable. We derive lower limit on the total number of sources that is needed to achieve this accuracy through self-calibration. We show that this limit depends exponentially on the beam width and give estimates for various experimental parameters representative of future gravitational wave experiments DECIGO and BBO.Comment: 6 pages, 2 figures, accepted for publication in PR

    Observational signatures of f(R) dark energy models that satisfy cosmological and local gravity constraints

    Full text link
    We discuss observational consequences of f(R) dark energy scenarios that satisfy local gravity constraints (LGC) as well as conditions of the cosmological viability. The model we study is given by m(r)=C(-r-1)^p (C>0, p>1) with m=Rf_{,RR}/f_{,R} and r=-Rf_{,R}/f, which cover viable f(R) models proposed so far in a high-curvature region designed to be compatible with LGC. The equation of state of dark energy exhibits a divergence at a redshift z_c that can be as close as a few while satisfying sound horizon constraints of Cosmic Microwave Background (CMB). We study the evolution of matter density perturbations in details and place constraints on model parameters from the difference of spectral indices of power spectra between CMB and galaxy clustering. The models with p>5 can be consistent with those observational constraints as well as LGC. We also discuss the evolution of perturbations in the Ricci scalar R and show that an oscillating mode (scalaron) can easily dominate over a matter-induced mode as we go back to the past. This violates the stability of cosmological solutions, thus posing a problem about how the over-production of scalarons should be avoided in the early universe.Comment: 13 pages, 7 figures, version to appear in Physical Review

    Evolving Newton's Constant, Extended Gravity Theories and SnIa Data Analysis

    Full text link
    If Newton's constant G evolves on cosmological timescales as predicted by extended gravity theories then Type Ia supernovae (SnIa) can not be treated as standard candles. The magnitude-redshift datasets however can still be useful. They can be used to simultaneously fit for both H(z) and G(z) (so that local G(z) constraints are also satisfied) in the context of appropriate parametrizations. Here we demonstrate how can this analysis be done by applying it to the Gold SnIa dataset. We compare the derived effective equation of state parameter w(z) at best fit with the corresponding result obtained by neglecting the evolution G(z). We show that even though the results clearly differ from each other, in both cases the best fit w(z) crosses the phantom divide w=-1. We then attempt to reconstruct a scalar tensor theory that predicts the derived best fit forms of H(z) and G(z). Since the best fit G(z) fixes the scalar tensor potential evolution F(z), there is no ambiguity in the reconstruction and the potential U(z) can be derived uniquely. The particular reconstructed scalar tensor theory however, involves a change of sign of the kinetic term Φ(z)2\Phi'(z)^2 as in the minimally coupled case.Comment: Minor changes. Accepted in Phys. Rev. D. 7 revtex pages, 5 figures. The mathematica file with the numerical analysis of the paper is available at http://leandros.physics.uoi.gr/snevol.ht

    Anisotropic Cosmological Constant and the CMB Quadrupole Anomaly

    Full text link
    There are evidences that the cosmic microwave background (CMB) large-angle anomalies imply a departure from statistical isotropy and hence from the standard cosmological model. We propose a LCDM model extension whose dark energy component preserves its nondynamical character but wield anisotropic vacuum pressure. Exact solutions for the cosmological scale factors are presented, upper bounds for the deformation parameter are evaluated and its value is estimated considering the elliptical universe proposal to solve the quadrupole anomaly. This model can be constructed from a Bianchi I cosmology with cosmological constant from two different ways: i) a straightforward anisotropic modification of the vacuum pressure consistently with energy-momentum conservation; ii) a Poisson structure deformation between canonical momenta such that the dynamics remain invariant under scale factors rescalings.Comment: 8 pages, 2 columns, 1 figure. v2: figure improved, added comments on higher eccentricity powers and references. v3: typos corrected, version to appear in PR

    An interacting model for the cosmological dark sector

    Get PDF
    We discuss a new interacting model for the cosmological dark sector in which the attenuated dilution of cold dark matter scales as a3f(a)a^{-3}f(a), where f(a) is an arbitrary function of the cosmic scale factor aa. From thermodynamic arguments, we show that f(a) is proportional to entropy source of the particle creation process. In order to investigate the cosmological consequences of this kind of interacting models, we expand f(a) in a power series and viable cosmological solutions are obtained. Finally, we use current observational data to place constraints on the interacting function f(a).Comment: 5 pages, 3 figures, Phys. Rev. D (in press

    A k-essence Model Of Inflation, Dark Matter and Dark Energy

    Full text link
    We investigate the possibility for \textit{k}-essence dynamics to reproduce the primary features of inflation in the early universe, generate dark matter subsequently, and finally account for the presently observed acceleration. We first show that for a purely kinetic \textit{k}-essence model the late time energy density of the universe when expressed simply as a sum of a cosmological constant and a dark matter term leads to a static universe. We then study another \textit{k}-essence model in which the Lagrangian contains a potential for the scalar field as well as a non-canonical kinetic term. We show that such a model generates the basic features of inflation in the early universe, and also gives rise to dark matter and dark energy at appropriate subsequent stages. Observational constraints on the parameters of this model are obtained.Comment: 8 pages, Latex, minor changes to match with published versio

    Density perturbations in f(R) gravity theories in metric and Palatini formalisms

    Full text link
    We make a detailed study of matter density perturbations in both metric and Palatini formalisms in theories whose Lagrangian density is a general function, f(R), of the Ricci scalar. We derive these equations in a number of gauges. We show that for viable models that satisfy cosmological and local gravity constraints (LGC), matter perturbation equations derived under a sub-horizon approximation are valid even for super-Hubble scales provided the oscillating mode (scalaron) does not dominate over the matter-induced mode. Such approximate equations are especially reliable in the Palatini formalism because of the absence of scalarons. Using these equations we make a comparative study of the behaviour of density perturbations as well as gravitational potentials for a number of classes of theories. In the metric formalism the parameter m=Rf_{,RR}/f_{,R} characterising the deviation from the Lambda CDM model is constrained to be very small during the matter era in order to ensure compatibility with LGC, but the models in which m grows to the order of 10^{-1} around the present epoch can be allowed. These models also suffer from an additional fine tuning due to the presence of scalaron modes which are absent in the Palatini case. In Palatini formalism LGC and background cosmological constraints provide only weak bounds on |m| by constraining it to be smaller than ~ 0.1. This is in contrast to matter density perturbations which, on galactic scales, place far more stringent constraints on the present deviation parameter m of the order of |m| < 10^{-5} - 10^{-4}. This is due to the peculiar evolution of matter perturbations in the Palatini case which exhibits a rapid growth or a damped oscillation depending on the sign of m.Comment: 36 pages including 8 figures. Accepted for publication in Physical Review

    The Evolution of Voids in the Adhesion Approximation

    Full text link
    We apply the adhesion approximation to study the formation and evolution of voids in the Universe. Our simulations -- carried out using 1283^3 particles in a cubical box with side 128 Mpc -- indicate that the void spectrum evolves with time and that the mean void size in the standard COBE-normalised Cold Dark Matter (hereafter CDM) model with h50=1,h_{50} = 1, scales approximately as Dˉ(z)=Dˉ01+z,\bar D(z) = {\bar D_0\over \sqrt {1+z}}, where Dˉ010.5\bar D_0 \simeq 10.5 Mpc. Interestingly, we find a strong correlation between the sizes of voids and the value of the primordial gravitational potential at void centers. This observation could in principle, pave the way towards reconstructing the form of the primordial potential from a knowledge of the observed void spectrum. Studying the void spectrum at different cosmological epochs, for spectra with a built in kk-space cutoff we find that, the number of voids in a representative volume evolves with time. The mean number of voids first increases until a maximum value is reached (indicating that the formation of cellular structure is complete), and then begins to decrease as clumps and filaments merge leading to hierarchical clustering and the subsequent elimination of small voids. The cosmological epoch characterizing the completion of cellular structure occurs when the length scale going nonlinear approaches the mean distance between peaks of the gravitational potential. A central result of this paper is thatComment: Plain TeX, 38 pages Plus 16 Figures (available on request from the first author), IUCAA-28 To appear in The Astrophysical Journal, July 199
    corecore